
Package: buildmer (via r-universe)
August 20, 2024

Title Stepwise Elimination and Term Reordering for Mixed-Effects
Regression

Version 2.11

Description Finds the largest possible regression model that will
still converge for various types of regression analyses
(including mixed models and generalized additive models) and
then optionally performs stepwise elimination similar to the
forward and backward effect-selection methods in SAS, based on
the change in log-likelihood or its significance, Akaike's
Information Criterion, the Bayesian Information Criterion, the
explained deviance, or the F-test of the change in R².

Depends R (>= 3.2)

Imports graphics, lme4, methods, mgcv, nlme, stats, utils

Suggests GLMMadaptive, MASS, gamm4, glmertree, glmmTMB, knitr,
lmerTest, nnet, ordinal, parallel, partykit, pbkrtest,
rmarkdown, testthat

License FreeBSD

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

BugReports https://gitlab.com/cvoeten/buildmer/-/issues

VignetteBuilder knitr

NeedsCompilation no

Repository https://cvoeten.r-universe.dev

RemoteUrl https://gitlab.com/cvoeten/buildmer

RemoteRef HEAD

RemoteSha 6aca1c8e94a4b7652e64fcb4049d64f544538063

1

https://gitlab.com/cvoeten/buildmer/-/issues

2 buildmer-package

Contents
buildmer-package . 2
add.terms . 3
build.formula . 3
buildbam . 4
buildclmm . 5
buildcustom . 6
buildgam . 8
buildgamm . 9
buildgamm4 . 10
buildGLMMadaptive . 11
buildglmmTMB . 12
buildgls . 13
buildlme . 14
buildmer . 15
buildmer-class . 16
buildmer.nb . 16
buildmerControl . 17
buildmertree . 20
buildmultinom . 22
converged . 22
diag,formula-method . 23
LRTalpha . 24
migrant . 24
re2mgcv . 25
remove.terms . 25
tabulate.formula . 26
vowels . 27

Index 28

buildmer-package Construct and fit as complete a model as possible and perform step-
wise elimination

Description

The buildmer package consists of a number of functions, each designed to fit specific types of
models (e.g. buildmer for mixed-effects regression, buildgam for generalized additive models,
buildmertree for mixed-effects-regression trees, and so forth). The common parameters shared
by all (or most of) these functions are documented here. If you are looking for a more general
description of what the various build... functions do, see under ‘Details’. For function-specific
details, see the documentation for each individual function.

add.terms 3

add.terms Add terms to a formula

Description

Add terms to a formula

Usage

add.terms(formula, add)

Arguments

formula The formula to add terms to.

add A vector of terms to add. To add terms nested in random-effect groups, use
‘(term|group)’ syntax if you want to add an independent random effect (e.g.
‘(olderterm|group) + (term|group)’), or use ‘term|group’ syntax if you want to
add a dependent random effect to a pre-existing term group (if no such group
exists, it will be created at the end of the formula).

Value

The updated formula.

Examples

library(buildmer)
form <- Reaction ~ Days + (1|Subject)
add.terms(form,'Days|Subject')
add.terms(form,'(0+Days|Subject)')
add.terms(form,c('many','more|terms','to|terms','(be|added)','to|test'))

build.formula Convert a buildmer term list into a proper model formula

Description

Convert a buildmer term list into a proper model formula

Usage

build.formula(dep, terms, env = parent.frame())

4 buildbam

Arguments

dep The dependent variable.

terms The term list.

env The environment of the formula to return.

Value

A formula.

Examples

library(buildmer)
form1 <- Reaction ~ Days + (Days|Subject)
terms <- tabulate.formula(form1)
form2 <- build.formula(dep='Reaction',terms)

check that the two formulas give the same results
library(lme4)
check <- function (f) resid(lmer(f,sleepstudy))
all.equal(check(form1),check(form2))

can also do double bars now
form1 <- Reaction ~ Days + (Days||Subject)
terms <- tabulate.formula(form1)
form2 <- build.formula(dep='Reaction',terms)
all.equal(check(form1),check(form2))

buildbam Use buildmer to fit big generalized additive models using bam from
package mgcv

Description

Use buildmer to fit big generalized additive models using bam from package mgcv

Usage

buildbam(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl()

)

buildclmm 5

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

To work around an issue in bam, you must make sure that your data do not contain a variable named
’intercept’.

lme4 random effects are supported: they will be automatically converted using re2mgcv.

As bam uses PQL, only crit='F' and crit='deviance' (note that the latter is not a formal test)
are supported for non-Gaussian errors.

See Also

buildmer-package

Examples

library(buildmer)
model <- buildbam(f1 ~ s(timepoint,by=following) + s(participant,by=following,bs='re') +

s(participant,timepoint,by=following,bs='fs'),data=vowels)

buildclmm Use buildmer to fit cumulative link mixed models using clmm from
package ordinal

Description

Use buildmer to fit cumulative link mixed models using clmm from package ordinal

Usage

buildclmm(formula, data = NULL, buildmerControl = buildmerControl())

Arguments

formula A formula specifying both fixed and random effects using lme4 syntax

data See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

6 buildcustom

See Also

buildmer-package

Examples

if (requireNamespace('ordinal')) {
model <- buildclmm(SURENESS ~ PROD + (1|RESP),data=ordinal::soup,
buildmerControl=list(args=list(link='probit',threshold='equidistant')))
}

buildcustom Use buildmer to perform stepwise elimination using a custom fitting
function

Description

Use buildmer to perform stepwise elimination using a custom fitting function

Usage

buildcustom(
formula,
data = NULL,
fit = function(p, formula) stop("'fit' not specified"),
crit = function(p, ref, alt) stop("'crit' not specified"),
elim = function(x) stop("'elim' not specified"),
REML = FALSE,
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

fit A function taking two arguments, of which the first is the buildmer parameter
list p and the second one is a formula. The function must return a single object,
which is treated as a model object fitted via the provided formula. The function
must return an error (‘stop()’) if the model does not converge.

crit A function taking one argument and returning a single value. The argument is
the return value of the function passed in fit, and the returned value must be
a numeric indicating the goodness of fit, where smaller is better (like AIC or
BIC).

elim A function taking one argument and returning a single value. The argument is
the return value of the function passed in crit, and the returned value must be a
logical indicating if the small model must be selected (return TRUE) or the large
model (return FALSE).

buildcustom 7

REML A logical indicating if the fitting function wishes to distinguish between fits dif-
fering in fixed effects (for which p$reml will be set to FALSE) and fits differing
only in the random part (for which p$reml will be TRUE). Note that this ignores
the usual semantics of buildmer’s optional REML argument, because they are re-
dundant: if you wish to force REML on or off, simply code it so in your custom
fitting function.

buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

See Also

buildmer-package

Examples

Use \code{buildmer} to do stepwise linear discriminant analysis
library(buildmer)
migrant[,-1] <- scale(migrant[,-1])
flipfit <- function (p,formula) {

The predictors must be entered as dependent variables in a MANOVA
(i.e. the predictors must be flipped with the dependent variable)
Y <- model.matrix(formula,migrant)
m <- lm(Y ~ 0+migrant$changed)
the model may error out when asking for the MANOVA
test <- try(anova(m))
if (inherits(test,'try-error')) test else m

}
crit.F <- function (p,a,b) { # use whole-model F

pvals <- anova(b)$'Pr(>F)' # not valid for backward!
pvals[length(pvals)-1]

}
crit.Wilks <- function (p,a,b) {

if (is.null(a)) return(crit.F(p,a,b)) #not completely correct, but close as F approximates X2
Lambda <- anova(b,test='Wilks')$Wilks[1]
p <- length(coef(b))
n <- 1
m <- nrow(migrant)
Bartlett <- ((p-n+1)/2-m)*log(Lambda)
pchisq(Bartlett,n*p,lower.tail=FALSE)

}

First, order the terms based on Wilks' Lambda
model <- buildcustom(changed ~ friends.nl+friends.be+multilingual+standard+hearing+reading+

attention+sleep+gender+handedness+diglossic+age+years,buildmerControl=list(
fit=flipfit,crit=crit.Wilks,direction='order'))

Now, use the six most important terms (arbitrary choice) in the LDA
if (require('MASS')) {
model <- lda(changed ~ diglossic + age + reading + friends.be + years +

multilingual,data=migrant)
}

8 buildgam

buildgam Use buildmer to fit generalized additive models using gam from pack-
age mgcv

Description

Use buildmer to fit generalized additive models using gam from package mgcv

Usage

buildgam(
formula,
data = NULL,
family = gaussian(),
quickstart = 0,
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package

quickstart A numeric with values from 0 to 5. If set to 1, will use bam to obtain starting
values for gam’s outer iteration, potentially resulting in a much faster fit for each
model. If set to 2, will disregard ML/REML and always use bam’s fREML for the
quickstart fit. 3 also sets discrete=TRUE. Values between 3 and 4 fit the quick-
start model to a subset of that value (e.g.\ quickstart=3.1 fits the quickstart
model to 10% of the data, which is also the default if quickstart=3. Values
between 4 and 5 do the same, but also set a very sloppy convergence tolerance
of 0.2.

buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

To work around an issue in gam, you must make sure that your data do not contain a variable named
’intercept’.

lme4 random effects are supported: they will be automatically converted using re2mgcv.

If gam’s optimizer argument is not set to use outer iteration, gam fits using PQL. In this scenario,
only crit='F' and crit='deviance' (note that the latter is not a formal test) are legitimate in the
generalized case.

General families implemented in mgcv are supported, provided that they use normal formulas. Cur-
rently, this is only true of the cox.ph family. Because this family can only be fitted using REML,

buildgamm 9

buildgam automatically sets gam’s select argument to TRUE and prevents removal of parametric
terms.

buildmerControl’s quickstart function may be used here. If you desire more control (e.g.\ discrete=FALSE
but use.chol=TRUE), additional options can be provided as extra arguments and will be passed on to
bam as they are applicable. Note that quickstart needs to be larger than 0 to trigger the quickstart
path at all.

If scaled-t errors are used (family=scat), the quickstart path will also provide initial values for the
two theta parameters (corresponding to the degrees of freedom and the scale parameter), but only if
your installation of package mgcv is at least at version 1.8-32.

See Also

buildmer-package

Examples

library(buildmer)
model <- buildgam(f1 ~ s(timepoint,by=following) + s(participant,by=following,bs='re') +

s(participant,timepoint,by=following,bs='fs'),data=vowels)

buildgamm Use buildmer to fit big generalized additive models using gamm from
package mgcv

Description

Use buildmer to fit big generalized additive models using gamm from package mgcv

Usage

buildgamm(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

10 buildgamm4

Details

The fixed and random effects are to be passed as a single formula in lme4 format. This is internally
split up into the appropriate fixed and random parts. Only a single grouping factor is allowed.
The random-effect covariance matrix is always unstructured. If you want to use pdMat covariance
structures, you must (a) not specify any lme4 random-effects term in the formula, and (b) specify
your own custom random argument in the args list in buildmerControl. Note that buildgamm will
merely pass this through; no term reordering or stepwise elimination is done on a user-provided
random argument.

See Also

buildmer-package

Examples

library(buildmer)
model <- buildgamm(f1 ~ s(timepoint,by=following) + (following|participant) +

s(participant,timepoint,by=following,bs='fs'),data=vowels)

buildgamm4 Use buildmer to fit generalized additive models using package gamm4

Description

Use buildmer to fit generalized additive models using package gamm4

Usage

buildgamm4(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package
data See the general documentation under buildmer-package
family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

The fixed and random effects are to be passed as a single formula in lme4 format. This is internally
split up into the appropriate fixed and random parts.

buildGLMMadaptive 11

See Also

buildmer-package

Examples

library(buildmer)
if (requireNamespace('gamm4')) model <- buildgamm4(f1 ~ s(timepoint,by=following) +

s(participant,timepoint,by=following,bs='fs'),data=vowels)

buildGLMMadaptive Use buildmer to fit generalized linear mixed models using
mixed_model from package GLMMadaptive

Description

Use buildmer to fit generalized linear mixed models using mixed_model from package GLMMadaptive

Usage

buildGLMMadaptive(
formula,
data = NULL,
family,
buildmerControl = buildmerControl()

)

Arguments

formula A formula specifying both fixed and random effects using lme4 syntax. (Unlike
mixed_model, buildGLMMadaptive does not use a separate random argument!)

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

The fixed and random effects are to be passed as a single formula in lme4 format. This is internally
split up into the appropriate fixed and random parts.

As GLMMadaptive can only fit models with a single random-effect grouping factor, having multiple
different grouping factors will raise an error.

If multiple identical random-effect grouping factors are provided, they will be concatenated into a
single grouping factor using the double-bar syntax, causing GLMMadaptive to assume a diagonal
random-effects covariance matrix. In other words, (1|g) + (0+x|g) will correctly be treated as

12 buildglmmTMB

diagonal, but note the caveat: (a|g) + (b|g) will also be treated as fully diagonal, even if a and
b are factors which might still have had correlations between their individual levels! This is a
limitation of both GLMMadaptive and buildmer’s approach to handling double bars.

See Also

buildmer-package

Examples

if (requireNamespace('GLMMadaptive')) {
nonsensical model given these data
model <- buildGLMMadaptive(stress ~ vowel + (vowel|participant),

family=binomial,data=vowels,buildmerControl=list(args=list(nAGQ=1)))
or with double-bar syntax for a diagonal r.e. cov. matrix
model <- buildGLMMadaptive(stress ~ vowel + (vowel||participant),

family=binomial,data=vowels,buildmerControl=list(args=list(nAGQ=1)))
}

buildglmmTMB Use buildmer to perform stepwise elimination on glmmTMB models

Description

Use buildmer to perform stepwise elimination on glmmTMB models

Usage

buildglmmTMB(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

See Also

buildmer-package

buildgls 13

Examples

library(buildmer)
if (requireNamespace('glmmTMB')) {
model <- buildglmmTMB(Reaction ~ Days + (Days|Subject),data=lme4::sleepstudy)

}

buildgls Use buildmer to fit generalized-least-squares models using gls from
nlme

Description

Use buildmer to fit generalized-least-squares models using gls from nlme

Usage

buildgls(formula, data = NULL, buildmerControl = buildmerControl())

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

A workaround is included to prevent an error when the model matrix is of less than full rank. The
summary output of such a model will look a bit strange!

See Also

buildmer-package

Examples

library(buildmer)
library(nlme)
vowels$event <- with(vowels,interaction(participant,word))
model <- buildgls(f1 ~ timepoint*following,data=vowels,
buildmerControl=list(args=list(correlation=corAR1(form=~1|event))))

14 buildlme

buildlme Use buildmer to perform stepwise elimination of mixed-effects models
fit via lme from nlme

Description

Use buildmer to perform stepwise elimination of mixed-effects models fit via lme from nlme

Usage

buildlme(formula, data = NULL, buildmerControl = buildmerControl())

Arguments

formula A formula specifying both fixed and random effects using lme4 syntax. (Unlike
lme, buildlme does not use a separate random argument!)

data See the general documentation under buildmer-package

buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

The fixed and random effects are to be passed as a single formula in lme4 format. This is internally
split up into the appropriate fixed and random parts. Only a single grouping factor is allowed.
The random-effect covariance matrix is always unstructured. If you want to use pdMat covariance
structures, you must (a) not specify any lme4 random-effects term in the formula, and (b) specify
your own custom random argument in the args list in buildmerControl. Note that buildlme will
merely pass this through; no term reordering or stepwise elimination is done on a user-provided
random argument.

See Also

buildmer-package

Examples

library(buildmer)
model <- buildlme(Reaction ~ Days + (Days|Subject),data=lme4::sleepstudy)

buildmer 15

buildmer Use buildmer to fit mixed-effects models using lmer/glmer from lme4

Description

Use buildmer to fit mixed-effects models using lmer/glmer from lme4

Usage

buildmer(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl()

)

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Examples

library(buildmer)
model <- buildmer(Reaction ~ Days + (Days|Subject),lme4::sleepstudy)

Tests from github issue #2, that also show the use of the 'direction' and 'crit' parameters:
bm.test <- buildmer(cbind(incidence,size - incidence) ~ period + (1 | herd),
family=binomial,data=lme4::cbpp)

bm.test <- buildmer(cbind(incidence,size - incidence) ~ period + (1 | herd),
family=binomial,data=lme4::cbpp,buildmerControl=buildmerControl(direction='forward'))

bm.test <- buildmer(cbind(incidence,size - incidence) ~ period + (1 | herd),
family=binomial,data=lme4::cbpp,buildmerControl=buildmerControl(crit='AIC'))
bm.test <- buildmer(cbind(incidence,size - incidence) ~ period + (1 | herd),
family=binomial,data=lme4::cbpp,
buildmerControl=buildmerControl(direction='forward',crit='AIC'))

Example showing use of the 'include' parameter to force a particular term into the model
m1 <- buildmer(Reaction ~ Days,data=lme4::sleepstudy,buildmerControl=list(include=~(1|Subject)))
the below are equivalent
m2 <- buildmer(Reaction ~ Days,data=lme4::sleepstudy,buildmerControl=list(include='(1|Subject)'))
m3 <- buildmer(Reaction ~ Days + (1|Subject),data=lme4::sleepstudy,buildmerControl=list(
include=~(1|Subject)))
m4 <- buildmer(Reaction ~ Days + (1|Subject),data=lme4::sleepstudy,buildmerControl=list(
include='(1|Subject)'))

16 buildmer.nb

buildmer-class The buildmer class

Description

This is a simple convenience class that allows ‘anova’ and ‘summary’ calls to fall through to the
underlying model object, while retaining buildmer’s iteration history. If you need to use the final
model for other things, such as prediction, access it through the ‘model’ slot of the buildmer class
object.

Slots

model The final model containing only the terms that survived elimination

p Parameters used during the fitting process

anova The model’s ANOVA, if the model was built with ‘anova=TRUE’

summary The model’s summary, if the model was built with ‘summary=TRUE’

See Also

buildmer

Examples

Manually create a bare-bones buildmer object:
model <- lm(Sepal.Length ~ Petal.Length,iris)
p <- list(in.buildmer=FALSE)
library(buildmer)
bm <- mkBuildmer(model=model,p=p,anova=NULL,summary=NULL)
summary(bm)

buildmer.nb Use buildmer to fit negative-binomial models using glm.nb and
glmer.nb

Description

Use buildmer to fit negative-binomial models using glm.nb and glmer.nb

Usage

buildmer.nb(formula, data = NULL, buildmerControl = buildmerControl())

buildmerControl 17

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

See Also

buildmer-package

Examples

library(buildmer)
if (requireNamespace('MASS')) {
model <- buildmer.nb(Days ~ Sex*Age*Eth*Lrn,MASS::quine)
}

buildmerControl Set control options for buildmer

Description

buildmerControl provides all the knobs and levers that can be manipulated during the buildmer
fitting and summary/anova process. Some of these are part of buildmer’s core functionality—for
instance, crit allows to specify different elimination criteria, a core buildmer feature—whereas
some are only meant for internal usage, e.g. I_KNOW_WHAT_I_AM_DOING is only used to turn off the
PQL safeguards in buildbam/buildgam, which you really should only do if you have a very good
reason to believe that the PQL check is being triggered erroneously for your problem.

Usage

buildmerControl(
formula = quote(stop("No formula specified")),
data = NULL,
family = gaussian(),
args = list(),
direction = c("order", "backward"),
cl = NULL,
crit = NULL,
elim = NULL,
fit = function(...) stop("No fitting function specified"),
include = NULL,
quiet = FALSE,
calc.anova = FALSE,
calc.summary = TRUE,
ddf = "Wald",
quickstart = 0,

18 buildmerControl

singular.ok = FALSE,
grad.tol = formals(buildmer::converged)$grad.tol,
hess.tol = formals(buildmer::converged)$hess.tol,
dep = NULL,
REML = NA,
can.use.reml = TRUE,
force.reml = FALSE,
scale.est = NA,
I_KNOW_WHAT_I_AM_DOING = FALSE

)

Arguments

formula The model formula for the maximal model you would like to fit. Alternatively,
a buildmer term list as obtained from tabulate.formula. In the latter formula-
tion, you also need to specify a dep='...' argument specifying the dependent
variable to go along with the term list. See tabulate.formula for an example
of where this is useful.

data The data to fit the model(s) to.

family The error distribution to use.

args Extra arguments passed to the fitting function.

direction Character string or vector indicating the direction for stepwise elimination; pos-
sible options are 'order' (order terms by their contribution to the model),
'backward' (backward elimination), 'forward' (forward elimination, implies
order). The default is the combination c('order','backward'), to first make
sure that the model converges and to then perform backward elimination; other
such combinations are perfectly allowed.

cl Specifies a cluster to use for parallelizing the evaluation of terms. This can be
an object as returned by function makeCluster from package parallel, or a
whole number to let buildmer create, manage, and destroy a cluster for you with
the specified number of parallel processes.

crit Character string or vector determining the criterion used to test terms for their
contribution to the model fit in the ordering step. Possible options are 'LRT'
(likelihood-ratio test based on chi-square mixtures per Stram & Lee 1994 for
random effects; this is the default), 'LL' (use the raw -2 log likelihood), 'AIC'
(Akaike Information Criterion), 'BIC' (Bayesian Information Criterion), and
'deviance' (explained deviance – note that this is not a formal test). If left at
its default value of NULL, the same value is used as in the elim argument; if that
is also NULL, both are set to 'LRT'. If crit is a function, it may optionally have
an crit.name attribute, which will be used as its name in buildmer. This is used
to guide the code checking for mismatches between crit and elim arguments.

elim Character string or vector determining the criterion used to test terms for elimi-
nation in the elimination step. Possible options are 'LRT' (likelihood-ratio test
based on chi-square mixtures per Stram & Lee 1994 for random effects; this
is the default), 'LL' (use the raw -2 log likelihood), 'AIC' (Akaike Information
Criterion), 'BIC' (Bayesian Information Criterion), and 'deviance' (explained
deviance — note that this is not a formal test). If left at its default value of NULL,

buildmerControl 19

the same value is used as in the crit argument; if that is also NULL, both are
set to 'LRT'. If elim is a function, it may optionally have an elim.name at-
tribute, which will be used as its name in buildmer. This is used to guide the
code checking for mismatches between crit and elim arguments.

fit Internal parameter — do not modify.

include A one-sided formula or character vector of terms that will be included in the
model at all times and are not subject to testing for elimination. These do not
need to be specified separately in the formula argument. Useful for e.g. passing
correlation structures in glmmTMB models.

quiet A logical indicating whether to suppress progress messages.

calc.anova Logical indicating whether to also calculate the ANOVA table for the final model
after term elimination.

calc.summary Logical indicating whether to also calculate the summary table for the final
model after term elimination.

ddf The method used for calculating p-values for lme4 models and calc.anova=TRUE
or calc.summary=TRUE. Options are 'Wald' (default), 'Satterthwaite' (if
package lmerTest is available), 'Kenward-Roger' (if packages lmerTest and
pbkrtest are available), and 'lme4' (no p-values).

quickstart For gam models only: a numeric with values from 0 to 5. If set to 1, will use
bam to obtain starting values for gam’s outer iteration, potentially resulting in
a much faster fit for each model. If set to 2, will disregard ML/REML and
always use bam’s fREML for the quickstart fit. 3 also sets discrete=TRUE. Val-
ues between 3 and 4 fit the quickstart model to a subset of that value (e.g.\
quickstart=3.1 fits the quickstart model to 10% of the data, which is also the
default if quickstart=3. Values between 4 and 5 do the same, but also set a
very sloppy convergence tolerance of 0.2.

singular.ok Logical indicating whether singular fits are acceptable. Only for lme4 models.

grad.tol Tolerance for declaring gradient convergence. For buildbam, the default value
is multiplied by 100.

hess.tol Tolerance for declaring Hessian convergence. For buildbam, the default value
is multiplied by 100.

dep A character string specifying the name of the dependent variable. Only used if
formula is a buildmer terms list.

REML In some situations, the user may want to force REML on or off, rather than using
buildmer’s autodetection. If REML=TRUE (or more precisely, if isTRUE(REML)
evaluates to true), then buildmer will always use REML. This results in invalid
results if formal model-comparison criteria are used with models differing in
fixed effects (and the user is not guarded against this), but is useful with the
’deviance-explained’ criterion, where it is actually the default (you can dis-
able this and use the ’normal’ REML/ML-differentiating behavior by passing
REML=NA).

can.use.reml Internal option specifying whether the fitting engine should distinguish between
fixed-effects and random-effects model comparisons. Do not set this option
yourself unless you are programming a new fitting function for buildcustom.

20 buildmertree

force.reml Internal option specifying whether, if not differentiating between fixed-effects
and random-effects model comparisons, these comparisons should be based on
ML or on REML (if possible). Do not set this option yourself unless you are
programming a new fitting function for buildcustom. Enabling this option only
makes sense for criteria that do not compare likelihoods, in which case this is an
optimization; it is applied automatically for the ’deviance-explained’ criterion.

scale.est Internal option specifying whether the model estimates an unknown scale pa-
rameter. Used only in crit.F. Possible values are TRUE (scale is estimated),
FALSE (scale is known), and NA (unknown, needs to be inferred from the fitted
model; this is the default). There is limited support for modifying this parameter.

I_KNOW_WHAT_I_AM_DOING

An internal option that you should not modify unless you know what you are
doing.

Details

With the default options, all buildmer functions will do two things:

1. Determine the order of the effects in your model, based on their importance as measured by
the likelihood-ratio test statistic. This identifies the ‘maximal model’, which is the model
containing either all effects specified by the user, or subset of those effects that still allow the
model to converge, ordered such that the most information-rich effects have made it in.

2. Perform backward stepwise elimination based on the significance of the change in log-likelihood.

The final model is returned in the model slot of the returned buildmer object. All functions in
the buildmer package are aware of the distinction between (f)REML and ML, and know to divide
chi-square p-values by 2 when comparing models differing only in random effects (see Pinheiro &
Bates 2000). The steps executed above can be changed using the direction argument, allowing for
arbitrary chains of, for instance, forward-backward-forward stepwise elimination (although using
more than one elimination method on the same data is not recommended). The criterion for deter-
mining the importance of terms in the ordering stage and the elimination of terms in the elimination
stage can also be changed, using the crit argument.

buildmertree Use buildmer to perform stepwise elimination for lmertree and
glmertree models from package glmertree

Description

Use buildmer to perform stepwise elimination for lmertree and glmertree models from package
glmertree

buildmertree 21

Usage

buildmertree(
formula,
data = NULL,
family = gaussian(),
buildmerControl = buildmerControl(crit = "AIC")

)

Arguments

formula Either a glmertree formula, looking like dep ~ left | middle | right where
the middle part is an lme4-style random-effects specification, or an ordinary
formula (or buildmer term list thereof) specifying only the dependent variable
and the fixed and random effects for the regression part. In the latter case, the
additional argument partitioning must be specified as a one-sided formula
containing the partitioning part of the model.

data See the general documentation under buildmer-package

family See the general documentation under buildmer-package
buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

Details

Note that the likelihood-ratio test is not available for glmertree models, as it cannot be assured
that the models being compared are nested. The default is thus to use AIC. In the generalized
case or when testing many partitioning variables, it is recommended to pass joint=FALSE, as this
results in a dramatic speed gain and reduces the odds of the final glmer model failing to converge
or converging singularly.

See Also

buildmer-package

Examples

if (requireNamespace('glmertree')) {
model <- buildmertree(Reaction ~ 1 | (Days|Subject) | Days,
buildmerControl=buildmerControl(crit='LL',direction='order',args=list(joint=FALSE)),

data=lme4::sleepstudy)

model <- buildmertree(Reaction ~ 1 | (Days|Subject) | Days,
buildmerControl=buildmerControl(crit='LL',direction='order',args=list(joint=FALSE)),

data=lme4::sleepstudy,family=Gamma(link=identity))

}

22 converged

buildmultinom Use buildmer to perform stepwise elimination for multinom models
from package nnet

Description

Use buildmer to perform stepwise elimination for multinom models from package nnet

Usage

buildmultinom(formula, data = NULL, buildmerControl = buildmerControl())

Arguments

formula See the general documentation under buildmer-package

data See the general documentation under buildmer-package

buildmerControl

Control arguments for buildmer — see the general documentation under buildmerControl

See Also

buildmer-package

Examples

if (requireNamespace('nnet') && require('MASS')) {
options(contrasts = c("contr.treatment", "contr.poly"))
example(birthwt)
bwt.mu <- buildmultinom(low ~ age*lwt*race*smoke,bwt)

}

converged Test a model for convergence

Description

Test a model for convergence

Usage

converged(model, singular.ok = FALSE, grad.tol = 0.1, hess.tol = 0.01)

diag,formula-method 23

Arguments

model The model object to test.

singular.ok A logical indicating whether singular fits are accepted as ‘converged’ or not.
Relevant only for lme4 models.

grad.tol The tolerance to use for checking the gradient. This is currently only used by
mgcv, glmmTMB, and clm(m) models.

hess.tol The tolerance to use for checking the Hessian for negative eigenvalues. This is
currently only used by mgcv, glmmTMB, and cl(m)m models.

Value

Logical indicating whether the model converged.

Examples

library(buildmer)
library(lme4)
good1 <- lm(Reaction ~ Days,sleepstudy)
good2 <- lmer(Reaction ~ Days + (Days|Subject),sleepstudy)
bad <- lmer(Reaction ~ Days + (Days|Subject),sleepstudy,control=lmerControl(

optimizer='bobyqa',optCtrl=list(maxfun=1)))
sapply(list(good1,good2,bad),converged)

diag,formula-method Diagonalize the random-effect covariance structure, possibly assisting
convergence

Description

Diagonalize the random-effect covariance structure, possibly assisting convergence

Usage

S4 method for signature 'formula'
diag(x)

Arguments

x A model formula.

Value

The formula with all random-effect correlations forced to zero, per Pinheiro & Bates (2000)

24 migrant

Examples

1. Create explicit columns for factor variables
library(buildmer)
vowels <- cbind(vowels,model.matrix(~vowel,vowels))
2. Create formula with diagonal covariance structure
form <- diag(f1 ~ (vowel1+vowel2+vowel3+vowel4)*timepoint*following +

((vowel1+vowel2+vowel3+vowel4)*timepoint*following | participant) +
(timepoint | word))

3. Convert formula to buildmer terms list, grouping terms starting with 'vowel'
terms <- tabulate.formula(form,group='vowel[^:]')
4. Directly pass the terms object to buildmer, using the 'dep' argument to specify the
dependent variable
model <- buildmer(terms,data=vowels,buildmerControl=list(dep='f1'))

LRTalpha Generate an LRT elimination function with custom alpha level

Description

The elim argument in buildmerControl can take any user-specified elimination function. LRTalpha
generates such a function that uses the likelihood-ratio test, based on a user-specified alpha level.
(For the default alpha of .05, one can also simply specify the string 'LRT' or the function buildmer:::elim.LRT).

Usage

LRTalpha(alpha)

Arguments

alpha The alpha level for the likelihood-ratio test.

See Also

buildmerControl

migrant A very small dataset from a pilot study on sound change.

Description

A very small dataset from a pilot study on sound change.

Usage

data(migrant)

Format

A standard data frame.

re2mgcv 25

re2mgcv Convert lme4 random-effect terms to mgcv ’re’ smooths

Description

Convert lme4 random-effect terms to mgcv ’re’ smooths

Usage

re2mgcv(formula, data, drop = TRUE)

Arguments

formula The lme4 formula.

data The data.

drop Logical indicating whether constant, non-intercept columns should be dropped.
Default TRUE. A warning is issued if a column needed to be dropped. Note that
repeated intercept columns are silently merged without a warning.

Examples

library(buildmer)
re <- re2mgcv(temp ~ angle + (1|replicate) + (1|recipe),lme4::cake)
model <- buildgam(re$formula,re$data)
note: the below does NOT work, as the dependent variable is looked up in the data by name!

re <- re2mgcv(log(Reaction) ~ Days + (Days|Subject),lme4::sleepstudy)

remove.terms Remove terms from a formula

Description

Remove terms from a formula

Usage

remove.terms(formula, remove, check = TRUE)

26 tabulate.formula

Arguments

formula The formula.

remove A vector of terms to remove. To remove terms nested inside random-effect
groups, use ‘(term|group)’ syntax. Note that marginality is respected, i.e. no
effects will be removed if they participate in a higher-order interaction, and no
fixed effects will be removed if a random slope is included over that fixed effect.

check A logical indicating whether effects should be checked for marginality. If TRUE
(default), effects will not be removed if doing so would violate marginality. Set-
ting check to FALSE will remove terms unconditionally.

Examples

library(buildmer)
remove.terms(Reaction ~ Days + (Days|Subject),'(Days|Subject)')
illustration of the marginality checking mechanism:
this refuses to remove the term:
remove.terms(Reaction ~ Days + (Days|Subject),'(1|Subject)')
so does this, because marginality is checked before removal:
remove.terms(Reaction ~ Days + (Days|Subject),c('(Days|Subject)','(1|Subject)'))
but it works with check=FALSE
remove.terms(Reaction ~ Days + (Days|Subject),'(1|Subject)',check=FALSE)

tabulate.formula Parse a formula into a buildmer terms list

Description

Parse a formula into a buildmer terms list

Usage

tabulate.formula(formula, group = NULL)

Arguments

formula A formula.

group A character vector of regular expressions. Terms matching the same regular ex-
pression are assigned the same block, and will be evaluated together in buildmer
functions.

Value

A buildmer terms list, which is just a normal data frame.

See Also

buildmer-package

vowels 27

Examples

form <- diag(f1 ~ (vowel1+vowel2+vowel3+vowel4)*timepoint*following +
((vowel1+vowel2+vowel3+vowel4)*timepoint*following|participant) + (timepoint|word))

tabulate.formula(form)
tabulate.formula(form,group='vowel[1-4]')

vowels Vowel data from a pilot study.

Description

Vowel data from a pilot study.

Usage

data(vowels)

Format

A standard data frame.

Index

∗ datasets
migrant, 24
vowels, 27

add.terms, 3

build.formula, 3
buildbam, 4
buildclmm, 5
buildcustom, 6
buildgam, 2, 8
buildgamm, 9
buildgamm4, 10
buildGLMMadaptive, 11
buildglmmTMB, 12
buildgls, 13
buildlme, 14
buildmer, 2, 15, 16
buildmer-class, 16
buildmer-package, 2
buildmer.nb, 16
buildmerControl, 5, 7–15, 17, 17, 21, 22, 24
buildmertree, 2, 20
buildmultinom, 22

converged, 22

diag,formula-method, 23

LRTalpha, 24

migrant, 24
mkBuildmer (buildmer-class), 16

re2mgcv, 5, 8, 25
remove.terms, 25

tabulate.formula, 18, 26

vowels, 27

28

	buildmer-package
	add.terms
	build.formula
	buildbam
	buildclmm
	buildcustom
	buildgam
	buildgamm
	buildgamm4
	buildGLMMadaptive
	buildglmmTMB
	buildgls
	buildlme
	buildmer
	buildmer-class
	buildmer.nb
	buildmerControl
	buildmertree
	buildmultinom
	converged
	diag,formula-method
	LRTalpha
	migrant
	re2mgcv
	remove.terms
	tabulate.formula
	vowels
	Index

